
PHYSICAL REVIEW E 66, 036115 ~2002!
Conserved contact process in one to five dimensions
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We analyze the conserved contact process in hypercubic lattices with dimensions ranging from one to five.
In this process particles jump around, falling down only on empty sites beside an existing particle. The model
is a version of the ordinary contact process with a strictly conserved particle number and can be seen as the
contact process in an ensemble of fixed particle number. By means of numerical simulations we determine the
critical point, the critical exponentb, and the fractal dimensiondF at the critical point. In the case of just two
particles, the stationary state is obtained exactly in any dimension.
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I. INTRODUCTION

Recently, Tome´ and de Oliveira@1# introduced the con-
served contact process~CCP!, a version of the ordinary con
tact process with a strictly conserved particle number. In
CCP, particles jump around over the sites of a regular lat
falling down only on empty sites that have at least one nei
boring site occupied by a particle. In contrast with the or
nary contact process, the CCP does not have an abso
state. Despite of lacking this important feature, it displa
properties that, in the thermodynamic limit, are identical
those of the ordinary contact process, including universa
well as nonuniversal quantities. The CCP has been then i
tified as the contact process in an ensemble of constant
ticle number and this has been indeed confirmed by num
cal simulation in one dimension@1#. Later, Hilhorst and
Wijland @2# have provided a proof of the equivalence b
tween the two stationary state ensembles: the ordinary
semble~i.e., the constant rate ensemble! and the conserved
ensemble~i.e., the constant particle number ensemble!.

The use of distinct ensembles to calculate the thermo
namic properties of the system in equilibrium is well esta
lished and there exists a standard procedure for passing
one to another ensemble@3–5#. For nonequilibrium systems
no such general procedure exists. However, the possibilit
using distinct ensembles in nonequilibrium models was
forward by Ziff and Brosilow@6# when they employed a
constant coverage ensemble to analyze an irrevers
surface-reaction model originally defined in a constant r
ensemble.

The ordinary contact process, proposed by Harris@7#, is
the simplest nonequilibrium model displaying a phase tr
sition and critical behavior@8–17#. It exhibits a continuous
phase transition from an active state, with nonzero densit
particles, to an absorbing state, with zero density of partic
even in one dimension and belongs to the universality c
of directed percolation@18–20#. The contact process ind
dimension has the same critical exponents of directed pe
lation in D5d11 dimensions. The upper critical dimensio
of the directed percolation was established to beDc55 @21#
so that the critical dimension for the contact process isdc
54. Therefore, ford>4 the critical exponents are the cla
sical ones with possible logarithmic corrections at the criti
dimension.
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Here, we perform numerical simulations of the CCP d
fined on hypercubic lattices with dimensionsd ranging from
d51 up tod55. The conservation of particles allowed us
perform numerical simulations that avoided the acciden
fall into the absorbing state. We determine the critical po
as well as the critical exponentb related to the order param
eter and the fractal dimensiondF at the critical point. The use
of the constant particle number ensemble permitted us
determination of the critical point with a very good prec
sion. The results forb anddF are in good agreement with th
values of the ordinary contact process. In the special cas
just two particles the stationary state is obtained exactly
any dimension by the use of the lattice Green function.

The CCP is related to the plant population model int
duced by Bro¨ker and Grassberger@22# in the sense that thes
two models are conserved versions of models belonging
the directed percolation universality class, namely, the c
tact process and the directed percolation model, respectiv
In the Bröker and Grassberger model, however, the cons
vation of particles is achieved in a distinct way. In the
model the conservation of particles is imposed in a glo
way by removing the excess of particles from the system

II. THE CONSERVED CONTACT PROCESS

The ordinary contact process comprises two subproces
a catalytic creation and a spontaneous annihilation of p
ticles. In the basic ordinary contact process@10,17#, particles
are created on the empty sites of a regular lattice with a
l/z times the number of occupied nearest neighbors, whez
is the lattice coordination number. Particles are annihila
spontaneously with rate 1. Here, we use a definition in wh
the creation rate is 1/z times the number of occupied neare
neighbors, and the annihilation rate isk51/l.

Let us denote byh i the occupation variable attached
the sitei, with h i50 or 1 according to whether the sitei is
empty or occupied. The time evolution of the probabili
distributionP(h,t), whereh5(h1 ,h2 , . . . ,hN) is the vec-
tor that represents the collection of occupation variables
governed by the master equation

d

dt
P~h,t !5(

i
$wi~h i !P~h i ,t !2wi~h!P~h,t !%, ~1!
©2002 The American Physical Society15-1
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whereh i is the vectorh i5(h1 ,h2 , . . . ,12h i , . . . ,hN) and
wi(h) is the transition rate from stateh to stateh i . For the
basic ordinary contact process the transtion rate is given

wi~h!5
1

z
~12h i !(

d
h i 1d1kh i , ~2!

where the first term accounts for the catalytic creation p
cess and the second accounts for the spontaneous ann
tion process. The summation ind is over thez nearest neigh-
bor sites.

Empty sites with one or more occupied neighbors, wh
we call active empty sites, play an important role in t
contact process since particles are created only on those
A quantity that measures the number of such sites is
effective number of active empty sitesnac defined as

nac5
1

z (
i

~12h i !(
d

h i 1d . ~3!

The number of particlesn is given by

n5(
i

h i . ~4!

From the master equation~1! of the ordinary contact proces
it follows that the time evolution of the mean number
particles^n& is given by

d

dt
^n&5^nac&2k^n&. ~5!

Therefore, the stationary condition gives

^nac&5k^n&. ~6!

The contact process in an ensemble of constant par
number is defined as follows. An empty site becomes oc
pied in a way similar to the catalytic creation. But contrary
the ordinary contact process no particle is created; a
domly chosen particle of the system leaves its place
jumps to the empty site. Thus, both the processes of crea
and annihilation of particles of the ordinary contact proc
are replaced by a jumping process. However, this is no
unrestricted jumping because particles are not allowed
jump to a vacant site surrounded by empty sites; at least
neighbor site must be occupied. The CCP is a two-site p
cess governed by the following master equation:

d

dt
P~h,t !5

1

n (
i

(
j

$wi j ~h i j !P~h i j ,t !2wi j ~h!P~h,t !%,

~7!

where h i j is the vector h i j 5(h1 ,h2 , . . . ,12h i , . . . ,1
2h j , . . . ,hN) andwi j (h) is the jumping transition rate, tha
is, the transition rate from stateh to stateh i j given by

wi j ~h!5h i

1

z
~12h j !(

d
h j 1d . ~8!
03611
y

-
ila-

h

tes.
e

le
u-

n-
d

on
s
n

to
ne
o-

The model strictly conserves the number of particlesn.
The mean effective number of active sites per partic

denoted bya, is given by

a5
^nac&

n
, ~9!

where the average is to be taken over the ensemble wi
constant particle number. In the thermodynamic limita5k.

III. TWO PARTICLES

We consider in this section the case of two particlesn
52, in an infinite lattice. In this case it is possible to sol
the master equation exactly. Invoking the translational inva
ance property it suffices to use the relative position of
particles to define a given configuration. Accordingly, we
a particle at the origin of the lattice so that the positionr of
the other particle completely defines the configuration of
system. We look for the probabilityPr(t) that the free par-
ticle is at positionr5(,1 ,,2 , . . . ,,d) where, i takes integer
values. From the master equation it follows that

d

dt
Pr~ t !5

1

2z (
d

Pr1d~ t !2Pr~ t !, ~10!

valid for ur uÞ1,0, whered represents any one of thez52d
vectors of unit lenght. Whenr5d the equation reads

d

dt
Pd~ t !5

1

2z (
d8(Þ2d)

Pd1d8~ t !2S 12
1

zD Pd~ t !

1
1

2z (
r8(Þd,0)

Pr8~ t !. ~11!

These equations should be solved forPr(t) with rÞ0. No-
tice thatP0(t) is not present above because two particles
not allowed to occupy the same site.

We are interested here only in the stationary solutionPr .
It is possible to show that the stationary solution is given
@23#

Pr5
Gr

12G0
, ~12!

whereGr is the lattice Green function

Gr5E
Bz

eik•r

11d21(
j 51

d

~12coskj !

ddk

~2p!d
, ~13!

wherek5(k1 ,k2 , . . . ,kd) and the integral is over the Bril
louin zone,2p<kj<p. In one dimension the integral~13!
can be carried out explicitly which with the help of Eq.~12!
gives

P,5
1

A321
~22A3! u,u, ~14!
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where,561,62, . . . .
The mean number of active sites,a5^nac&/2, is calcu-

lated by using the expressiona512Pd . Using Eq.~12! and
taking into account thatGd is related toG0 by Gd52G0
21, we obtain

a532
1

12G0
. ~15!

The mean distance between particlesR is given by R
5A^ur u2& where

^ur u2&5 (
r (Þ0)

ur u2Pr5
1

12G0
. ~16!

In one dimensionG051/A3 from which followsa5(3
2A3)/2 andR5@(31A3)/2#1/2. In other dimensions the in
tegral ~13! for G0 can be performed numerically. Using th
method we have obtained the numerical results shown in
first row (n52) of Table I.

IV. SUBCRITICAL REGIME

Due to the fact that the dynamics conserves the numbe
particles, the CCP does not have an absorbing state.
conservation law allows us to carry out numerical simu
tions without the danger of falling into the absorbing state

TABLE I. Mean effective number of active sites per particlea
of the CCP in an infinite hypercubic lattice of dimensions rang
from d51 to d55, in the subcritical regime. The last row gives th
order of the magnitude of the statistical errors of the results.

n d51 d52 d53 d54 d55

2 0.633974 0.842079 0.901897 0.9292383 0.94474
3 0.52357 0.78149 0.86573 0.903985 0.92542
4 0.46964 0.74570 0.84516 0.890173 0.91512
6 0.41611 0.70650 0.82219 0.875190 0.90418
8 0.38909 0.68508 0.80942 0.867049 0.89838
12 0.36174 0.66202 0.79539 0.858281 0.89229
16 0.34790 0.64969 0.78777 0.853580 0.88908
20 0.33944 0.64200 0.78291 0.850627 0.88710
28 0.32956 0.63281 0.77705 0.847076 0.88477
40 0.32206 0.62561 0.77237 0.844271 0.88296
56 0.31698 0.62060 0.76906 0.842302 0.88170
80 0.31299 0.61667 0.76646 0.840768 0.88074
112 0.31034 0.61396 0.76464 0.839701 0.8800
160 0.30825 0.61187 0.76320 0.838882 0.8795
224 0.30689 0.61045 0.76220 0.838308 0.8792
320 0.30585 0.60933 0.76143 0.837867 0.8789
450 0.30508 0.60856 0.76089 0.837561 0.8788
640 0.30456 0.60799 0.76048 0.837333 0.8786
900 0.30420 0.60758 0.76019 0.837170 0.8785
1300 0.30388 0.60728 0.75996 0.837042 0.8785
1800 0.30373 0.60708 0.75982 0.836966 0.8784
2600 0.30355 0.60692 0.75970 0.836900 0.8784

0.00002 0.00001 0.00001 0.000005 0.00000
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happens in the ordinary contact process. Thus, the quas
tionary states@17# observed in the ordinary contact proces
in the subcritical regime, become genuine stationary state
the CCP.

We have simulated the CCP on an infinited-dimensional
hypercubic lattice withd51, 2, 3, 4, and 5 for several value
of the number of particlesn from n52 up ton52600. In an
infinite lattice the particles do not scatter to infinity, as o
could expect, but remain close together forming a frac
cluster as can be seen in Fig. 1. The reason is that the
ticles are not allowed to jump to any site of the lattice b
only to those sites that are adjacent to an existing partic

The simulation of a system withn particles is performed
as follows. At each time step one of then occupied sites is
picked up at random and one of itsz neighboring sites is
chosen at random. If this neighboring site is empty then
will be occupied by one of then particles, chosen randomly
If, otherwise, the neighboring site is already occupied
state remains the same. A Monte Carlo step is definedn
such time steps. Each simulation was performed by star
from a configuration were all particles are close together. T
quantities of interest, such as^nac&, were estimated by using
a number of Monte Carlo steps ranging from 107 to 108.

Since the lattice is infinite and the number of particlesn is
finite, the density of particles is zero and the system is na
rally constrained to be into the subcritical regime. Table
shows the numerical values ofa5^nac&/n obtained from
simulations. The results shown for the casen52 were ex-
actly calculated in the preceding section. Asn→` the effec-
tive number of active sites per particlea approaches its criti-
cal value ac . The critical valueac was obtained by the
following extrapolation scheme applied to the data of Tab
corresponding ton>28. To each set of three consecutiv
points (a j 21 ,xj 21), (a j ,xj ), and (a j 11 ,xj 11), where x
51/n, we fitted a straight line from which we withdrew
trial extrapolated valueac j . The final extrapolated valueac
was then obtained by a quadratic regression over the po

6

FIG. 1. Snapshot of a configuration ofn5900 particles in an
infinite square lattice, in the subcritical regime. Thex and y axes
give the coordinates of the occupied sites, represented by s
black squares. The origin of the coordinate axes is arbitrary.
5-3
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(ac j ,xj ). The extrapolated value ofac is shown in Table II
together withlc51/ac .

A measure of the size of the cluster is given by the qu
tity R5A^r max

2 & wherer max(h) is the maximum distance be
tween two particles of the clusterh. As long asn is finite the
mean linear sizeR of the cluster is also finite but diverge
whenn→`. We assume the asymptotic behavior@22#

R;n1/dF, ~17!

where dF is the fractal dimension. Figure 2 showsR as a
function of n in a double-log plot for dimensions rangin
from one to five. The slopes of the straight lines fitted to
data points corresponding tod51, 2, and 3 are 1.338(6),
0.832(8), and 0.64(1), respectively. Ford54 and 5, the
slopes are consistent with the classical value 1/2. The inv
of these values give the fractal dimensiondF shown in
Table II.

V. SUPERCRITICAL REGIME

In the supercritical regime the density of particlesr is
nonzero. Therefore, in an infinite lattice the number of p

TABLE II. Values of ac , lc51/ac , the exponentb and the
fractal dimensiondF for dimensions ranging fromd51 to d55,
obtained for the CCP. The valuesac are extrapolations from the
results given in Table I by the method explained in the text.

d ac lc b dF

1 0.30323~2! 3.2978~2! 0.277~1! 0.747~4!

2 0.60653~1! 1.64872~3! 0.585~4! 1.20~1!

3 0.75940~1! 1.31683~2! 0.78~1! 1.56~3!

4 0.83674~1! 1.19511~1! 1 2
5 0.87837~1! 1.13847~1! 1 2

FIG. 2. Mean size of the systemR, in the subcritical regime, as
a function of the number of particlesn for dimensions ranging from
one to five on a double-log plot. For comparison we show a stra
line with a slope equal to 1/2.
03611
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ticles must be infinite. If the ration/N5r is kept fixed and
the limit N→` is taken, then the system is confined into t
supercritical regime ifr is nonzero. We have also simulate
the CCP model on a finite hypercubic lattice withN sites,
with n particles and periodic boundary conditions. The la
est values ofN used in simulations wereN510 000, N
51002, N5253, N5104, andN565, for d51, 2, 3, 4, and
d55, respectively. To estimate the average^nac& we used a
number of Monte Carlo steps ranging from 106 to 107. A
Monte Carlo step is defined here asN time steps defined in
the preceding section. The quantitya was then obtained by
Eq. ~9!.

For sufficient largeN one expects the following behavio

ac2a;r1/b, ~18!

whereb is the order parameter exponent. Figure 3 show
double-log plot ofac2a versus the density of particlesr,
where we used the values ofac obtained in the preceding
section and shown in Table II. The slope of the straight l
fitted to the data points gives the values 3.61(1), 1.71(2),
and 1.26(2) ford51, 2, and 3, respectively. Ford54 and
5, the slopes are consistent with the classical value 1.
inverse of these values give the exponentb shown in
Table II.

VI. CONCLUSIONS

We have analyzed the CCP in hypercubic lattices w
dimensions ranging from one to five. The critical exponenb
and the fractal dimensiondF obtained by numerical simula
tions are in good agreement with the respective values of
ordinary contact process@17#. The critical parameterslc ob-
tained here are in excelent agreement with those of the o
nary contact process@17#. In fact, the results presented he

ht

FIG. 3. Double-log plot ofac2a versus the densityr, in the
supercritical regime. For comparison we show a straight line w
slope equal to 1.
5-4
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for lc are the best estimates, with the exception of the c
d51. In the subcritical regime the CCP has a remarka
property. As one increases the number of particles in an
finite system it approaches criticality, anda approaches its
critical valueac , as can be seen in Table I. The CCP h
therefore, similarities with self-organized criticality, in th
a
,
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sense that no adjustable parameter is necessary to driv
system to criticality.
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